미적분학 - 다변수 함수의 연쇄법칙
안녕하세요. 지난 포스팅의 미적분학 - 다변수 함수의 미분가능성에서는 다변수 함수의 편미분이 존재한다고 해서 미분이 가능하지 않다는 점과 미분가능성에 대한 명확한 정의 그리고 전미분(total derivative)에 대해서 알아보았습니다. 오늘은 다변수 함수의 연쇄법칙에 대해서 알아보도록 하겠습니다. 미적분학 - 연쇄법칙에서 보았던 단변수 함수의 연쇄법칙을 상기해보도록 하겠습니다. 두 함수 $y = f(x)$와 $x = g(t)$가 주어지고 두 함수 모두 미분가능하다고 할 때 $\frac{dy}{dt}$를 구해보겠습니다. $$\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}$$ 위 수식을 잘 보시면 변수 $x$에 대한 미분 $dx$를 분모와 분자에 추가한 것을 볼 수 있습니다..