안녕하세요. 지난 포스팅의 [IS2D] RefineNet: Multi-Path Refinement Networks for High Resolution Semantic Segmentation (CVPR2017)에서는 RCU, MRF, CRP로 구성된 RefineNet에 대해서 알아보았습니다. 이를 통해 고해상도의 영상에서도 높은 성능을 달성하게 되었죠. 오늘은 self-attention의 확장된 개념인 Non-local Operation을 활용하여 설계한 Non-local Neural Network에 대해서 알아보도록 하겠습니다. Background최근 음성, 신호, 자연어와 같은 시퀀셜 데이터 (Sequential Data)를 다루는 분야에서 recurrent operation을 활용하여 데이터에 내재..
안녕하세요. 지난 포스팅의 [IC2D] Attentional Feature Fusion (WACV2021)에서는 다중 스케일 특징 맵 간의 어텐션을 수행할 때 적응적으로 어텐션 맵을 추출하는 AFF 모듈에서 대해서 알아보았습니다. 오늘은 CVPR2020에 게재 승인된 GhostNet에 대해서 알아보도록 하겠습니다. Background지금까지 제안된 효율성을 강조한 다양한 모델들을 보았습니다. 가장 대표적으로 MobileNet, ShuffleNet, CondenseNet, NASNet 등이 있었죠. 이러한 모델들의 공통점은 모두 성능을 최대한 보존하면서 파라미터 개수나 latency 및 FLOPs를 줄임으로써 스마트폰 또는 자율주행 자동차에 모델을 사용할 수 있게 만드는 것을 목표로 하였습니다. 본 논문..
안녕하세요. 지난 포스팅의 [IS2D] Pyramid Scene Parsing Network (CVPR2017)에서는 Pyramid Pooling Module을 기반으로 Semantic Segmentation을 수행한 PSPNet에 대해서 소개하였습니다. 오늘은 Multi-Scale의 특성을 한껏 활용한 RefineNet에 대해서 소개하도록 하겠습니다. Background기본적으로 Semantic Segmentation은 픽셀별 classification을 수행해야하기 때문에 dense prediction problem 또는 object parsing이라고도 부릅니다. 대표적으로 VGG와 ResNet은 영상 분류 (Image Classification) 문제에서는 높은 성능을 달성하였지만 dense p..
안녕하세요. 지난 포스팅의 [IS2D] Rethinking Atrous Convolution for Semantic Segmentation (arxiv2017)에서는 Dilated Convolution을 활용한 DeepLabV3에 대해서 알아보았습니다. 오늘은 DeepLabV3와 유사하게 multi-branch 구조의 Pooling 모듈을 제안한 Pyramid Scene Pooling Network (PSPNet)에 대해서 알아보도록 하겠습니다. Background기본적으로 Semantic Segmentation은 영상 내의 각 픽셀에서 classification을 수행하는 dense prediction task라고 볼 수 있습니다. 이 때 Scene Parsing이라고 부르는 것이 Semantic S..
안녕하세요. 지난 포스팅의 [IC2D] Evolving Attention with Residual Connections (ICML2021)에서는 기존 CNN이나 Transformer가 수행하던 단일 계층에서의 어텐션이 아닌 서로 간의 residual connection을 도입하여 보다 추출되는 어텐션 맵을 정교하게 뽑아낼 수 있는 모듈인 Evolving Attention을 제안하였습니다. 최근 인공지능의 효율성을 강조한 모델들이 많이 나오게 되었는데 오늘 역시도 기존의 효율적인 모델의 대표격인 CondenseNet의 확장된 버전인 CondenseNet V2에 대해서 알아보도록 하겠습니다. Background지금까지 저희가 보아왔던 다양한 CNN 또는 Transformer 기반들은 충분한 computat..
안녕하세요. 지난 포스팅의 [IC2D] Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks (NIPS2018)에서는 Gather-Excite Block이라는 어텐션 모듈에 대해 소개하였습니다. 기본적인 컨셉은 SE Block의 일반화를 목표로하는 것이였습니다. 오늘 알아볼 ECA Block은 이러한 SE Block을 보다 효율적으로 구성하는 방법에 대해서 알려주고 있습니다. Background 지금까지 저희는 다양한 어텐션 모듈을 보았습니다. 가장 대표적으로 SE Block (CVPR2018)은 입력 특징 맵으로부터 channel descriptor를 얻는 Squeeze 연산과 두 개의 Fully-Connected (FC)..
안녕하세요. 지난 포스팅의 [IC2D] EfficientNetV2: Smaller Models and Faster Training (ICML2021)에서는 EfficientNetV1을 좀 더 깊게 분석하고 모델의 경량화를 발전시키기 위한 몇 가지 테크닉이 적용된 EfficientNetV2에 대해서 알아보았습니다. 이때, EfficientNetV2의 baseline 모델을 찾기 위해 EfficientNetV1-B4에서 MNASNet을 적용한 것을 볼 수 있었습니다. 오늘은 MNASNet에 대한 간단한 설명을 진행하도록 하겠습니다. MnasNet: Platform-Aware Neural Architecture Search for Mobile Designing convolutional neural networ..
안녕하세요. 지난 포스팅의 [IC2D] Improving Convolution Networks with Self-Calibrated Convolutions (CVPR2020)에서는 기존 어텐션 모듈과는 다르게 전혀 연산량을 늘리지 않는 Self-Calibrated Convolution에 대해서 설명드렸습니다. 오늘은 외부 unlabeled 데이터셋을 활용하여 ImageNet에서 성능 향상을 이룬 Noisy Student Training에 대해서 소개시켜드리도록 하겠습니다. Background 저희가 지금까지 보았던 다양한 모델들의 필수 과정은 ImageNet과 같은 대규모 데이터셋에서 full supervision을 필요로 합니다. 본 논문에서는 레이블이 존재하지 않는 외부 데이터셋도 함께 사용하여 Im..