안녕하세요. 지난 포스팅의 [IC2D] Deep Residual Learning for Image Recognition (CVPR2016)에서는 ResNet 계열 모델의 시작을 알린 ResNet에 대해서 소개해드렸습니다. 오늘은 이 ResNet을 좀 더 심층적으로 분석하고 좀 더 성능을 향상시킬 수 있는 방법에 대해 소개한 논문에 대해서 소개해드리고자 합니다. 이를 통해 새로운 형태의 ResNet을 PreAct ResNet이라고 정의합니다. 본 논문에서는 어떤 방식으로 해당 모델을 정의하게 됬는지 한번 알아보도록 하죠. Identity Mappings in Deep Residual NetworksDeep residual networks have emerged as a family of extremel..
안녕하세요. 오늘은 지난 포스팅의 [IC2D] Going Deeper with Convolutions (CVPR2015)에서 소개드린 GooLeNet에 이어 ILSVRC 2015에서 VGGNet과 GoogLeNet을 압도적인 차이로 이긴 ResNet을 소개해드리도록 하겠습니다. ResNet은 현재 Semantic Segmentation, Object Detection과 같은 비전 분야에서 필수적으로 사용되고 있는 기본 모델로써 알고 사용하는 것이 굉장히 중요합니다. 오늘은 ResNet을 개발하게 된 동기를 이해한다면 쉽게 이해할 수 있습니다. Deep Residual Learning for Image RecognitionDeeper neural networks are more difficult to ..
안녕하세요. 지난 포스팅의 [IC2D] Very Deep Convolutional Networks for Large-Scale Image Recognition (ICLR2015)에서는 ILSVRC 2014에서 2등을 차지한 VGGNet에 대해서 리뷰를 해보았습니다. 오늘은 ILSVRC 2014에서 1등을 차지한 GooLeNet에 대해서 리뷰를 해보도록 하겠습니다. 대부분의 사람들한테는 VGGNet이 좀 더 인기가 많은 편 입니다. 아무래도 GooLeNet을 설계하는 과정에서 filter size를 아주 다양하게 적용하였는데 이 부분이 조금 난해하기 때문이라고 생각이 드네요. 오늘은 GooLeNet의 동기와 전체 네트워크 구조, 그리고 실험 결과와 함께 실제로 구현한 결과를 말씀드리도록 하겠습니다. Im..