CVPR

논문 함께 읽기/2D Image Classification (IC2D)

[IC2D] Densely Connected Convolutional Networks (CVPR2017)

안녕하세요. 지난 포스팅의 [IC2D] Aggregated Residual Transformations for Deep Neural Networks (CVPR2017)에서는 깊이(depth)나 너비 (width)보다 cardinality의 중요성을 강조하는 ResNext를 제안하였습니다. ResNet과 유사한 복잡도를 가지지만 성능 향상은 꽤 높은 편이였죠. 오늘은 계층간의 연결성 (connection)을 강조한 DenseNet에 대해서 소개해드리도록 하겠습니다. Densely Connected Convolutional Networks Recent work has shown that convolutional networks can be substantially deeper, more accurate, a..

논문 함께 읽기/2D Image Classification (IC2D)

[IC2D] Aggregated Residual Transformations for Deep Neural Networks (CVPR2017)

안녕하세요. 지난 포스팅의 [IC2D] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (arxiv2017)에서는 휴대장치에서도 빠르게 동작할 수 있는 효율적인 모델인 MobileNet에 대해서 소개해드렸습니다. 저희는 이때 처음으로 nn.Conv2d의 인자인 groups에 대해서 알게 되었습니다. MobileNet에서는 이를 depthwise로 사용하여 연산량을 낮추는 데 사용하였죠. 오늘은 ResNet과 InceptionNet을 기반으로 연구된 ResNext에 대해서 소개해드리도록 하겠습니다. Aggregated Residual Transformations for Deep Neural Networks ..

논문 함께 읽기/2D Image Classification (IC2D)

[IC2D] Rethinking the Inception Architecture for Computer Vision (CVPR2016)

안녕하세요. 지난 포스팅의 [IC2D] Deep Networks with Stochastic Depth (ECCV2016)에서는 ResNet에서 Stochastic Depth를 적용하여 학습의 효율성과 정규화 효과까지 동시에 얻은 방법에 대해서 설명하였습니다. 지난 포스팅에서는 새로운 네트워크 구조에 대한 설명은 없었습니다. 오늘은 지난 포스팅의 [IC2D] Going Deeper with Convolutions (CVPR2015)에서 제안된 GoogLeNet에서 한 단계 더 발전된 구조인 InceptionNet-V2와 InceptionNet-V3에 대해서 소개해드리도록 하겠습니다. Rethinking the Inception Architecture for Computer Vision Convolutio..

논문 함께 읽기/2D Image Classification (IC2D)

[IC2D] Deep Residual Learning for Image Recognition (CVPR2016)

안녕하세요. 오늘은 지난 포스팅의 [IC2D] Going Deeper with Convolutions (CVPR2015)에서 소개드린 GooLeNet에 이어 ILSVRC 2015에서 VGGNet과 GoogLeNet을 압도적인 차이로 이긴 ResNet을 소개해드리도록 하겠습니다. ResNet은 현재 Semantic Segmentation, Object Detection과 같은 비전 분야에서 필수적으로 사용되고 있는 기본 모델로써 알고 사용하는 것이 굉장히 중요합니다. 오늘은 ResNet을 개발하게 된 동기를 이해한다면 쉽게 이해할 수 있습니다. Deep Residual Learning for Image Recognition Deeper neural networks are more difficult to t..

논문 함께 읽기/2D Image Classification (IC2D)

[IC2D] Going Deeper with Convolutions (CVPR2015)

안녕하세요. 지난 포스팅의 [IC2D] Very Deep Convolutional Networks for Large-Scale Image Recognition (ICLR2015)에서는 ILSVRC 2014에서 2등을 차지한 VGGNet에 대해서 리뷰를 해보았습니다. 오늘은 ILSVRC 2014에서 1등을 차지한 GooLeNet에 대해서 리뷰를 해보도록 하겠습니다. 대부분의 사람들한테는 VGGNet이 좀 더 인기가 많은 편 입니다. 아무래도 GooLeNet을 설계하는 과정에서 filter size를 아주 다양하게 적용하였는데 이 부분이 조금 난해하기 때문이라고 생각이 드네요. 오늘은 GooLeNet의 동기와 전체 네트워크 구조, 그리고 실험 결과와 함께 실제로 구현한 결과를 말씀드리도록 하겠습니다. Ima..

논문 함께 읽기/2D Image Segmentation (IS2D)

[IS2D] Fully Convolutional Networks for Semantic Segmentation (CVPR2015)

안녕하세요. 오늘은 2015년에 나온 FCN이라는 약어로 유명한 Fully Convolutional Networks for Semantic Segmentation을 보도록 하겠습니다. 논문 출처 : https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 0. Abstract 합성곱 신경망(Convolutional Neural Network; CNN)은 입력 이미지의 특성의 계층을 얻는 강력한 모델입니다. 본 논문에서는 CNN만으로 신경망을 구성하였으며, end-to-end, pixel-to-pixel 방식으로 학습을 하고, semantic segmentation에서 SOTA 성능을 달성하였습니다. 본 논문에서 주의깊게 봐야할 점은 처음부터 끝까..

인공지능/논문 함께 읽기

논문 함께 읽기[7].EfficientDet:Scalable and Efficient Object Detection

안녕하세요. 오랜만에 논문 리뷰를 하게 되었습니다. 오늘 리뷰할 논문은 CVPR2020에서 등재된 EfficientDet:Scalable and Efficient Object Detection이라는 논문입니다. 비록 제가 Object Detection과 관련된 공부는 거의 해보지는 않았지만 지식을 넓히는 차원에서 간단하게 정리해보도록 하겠습니다. EfficientDet: Scalable and Efficient Object Detection Model efficiency has become increasingly important in computer vision. In this paper, we systematically study neural network architecture design choi..

Johns Hohns
'CVPR' 태그의 글 목록 (4 Page)