테일러 급수

수학/미적분학

미적분학 - 복잡한 함수의 테일러 급수

안녕하세요. 지난 포스팅의 미적분학 - 테일러 급수와 맥클로린 급수에서는 테일러 급수와 맥클로린 급수의 정의에 대해서 알아보았습니다. 또한, 간단한 함수인 $f(x) = e^{x}$의 맥클로린 급수 표현도 구해보았습니다. 오늘은 보다 복잡한 형태의 함수들의 테일러 급수 또는 맥클로린 급수를 구하는 방법에 대해서 알아보도록 하겠습니다. 먼저, 삼각함수로 시작해보도록 하겠습니다. 함수 $f(x) = \sin(x)$의 맥클로린 급수를 구해보도록 하죠. 맥클로린 급수의 계수는 아래와 같습니다. $$c_{n} = \frac{f^{(n)}(0)}{n!}$$ 따라서, $f(x) = \sin(x)$를 여러 번 미분해보아야 합니다. $$\begin{align*} &f^{'}(0) = 1 \\ &f^{''}(x) = 0 ..

수학/미적분학

미적분학 - 테일러 급수와 맥클로린 급수

안녕하세요. 지난 포스팅의 미적분학 - 함수의 멱급수 표현에서는 복잡한 형태의 함수를 단순한 다항식의 무한합으로 근사하는 방법에 대해서 알아보았습니다. 뿐만 아니라 원래는 기하급수 형태로 변환할 수 있는 $\frac{1}{1 - x}$ 꼴만 멱급수로 표현할 수 있었지만 미적분을 통해 더 다양한 함수들도 멱급수로 표현할 수 있게 되었습니다. 오늘은 특별한 형태의 멱급수인 테일러 급수(Taylor Series)와 맥클로린 급수(Maclaurin Series)에 대해서 설명드리도록 하겠습니다. 다시 한번 임의의 함수가 멱급수로 표현된다고 가정하고 수렴반경이 $\left|x - a\right| < R$이라고 할 때, 아래와 같이 표현할 수 있습니다. $$f(x) = c_{0} + c_{1}(x - a) + c_..

Johns Hohns
'테일러 급수' 태그의 글 목록