안녕하세요. 지난 포스팅의 선형대수학 - 연립선형방정식 2에서는 주어진 연립방정식을 행렬화했을 때 기약행 사다리꼴 행렬로 변환하는 가우스 소거법을 적용한 뒤 일반해를 구하는 방법에 대해서 알아보았습니다. 오늘은 다시 새로운 주제로 돌아와서 행렬식 (determinant)에 대해서 알아보도록 하겠습니다. 제가 고등학교에 있을때까지만 해도 $2 \times 2$ 크기의 행렬에서는 배웠었지만 최근에는 교과과정에서 삭제된 것 같더군요!! 하지만 대학교에서 선형대수학을 배우시게 되면 필수적으로 알아야하는 중요한 연산이기 때문에 한번 알아보도록 하겠습니다. 정의1. 행렬식 (Determinant) 행렬 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2 \tim..
안녕하세요. 지난 포스팅의 선형대수학 - 행렬의 계수에서는 행렬의 계수 (rank)가 무엇인지 정의하고 이를 구하는 방법까지 알아보았습니다. 핵심은 계수란 행렬 내에서 행벡터 또는 열벡터 중에서 선형독립인 벡터의 개수를 의미하고 쉽게 구하기 위해 기본행렬들을 곱해가며 $D$ 행렬꼴로 만드는 것이였습니다. 오늘은 이를 활용해서 역행렬을 구하는 방법에 대해서 알아보도록 하겠습니다. 사실상 지난 포스팅의 내용만 이해하신다면 쉽게 알 수 있습니다. 정의1. 첨가행렬 (Augmented Matrix) 행렬 $A$와 $B$를 각각 $m \times n$ 그리고 $m \times p$ 크기를 가지는 행렬이라고 하자. 첨가행렬 $(A | B)$는 $m \times (n + p)$ 크기의 행렬로 두 행렬 $A$와 $B$..