수학/미적분학
미적분학 - 매개변수 곡면
안녕하세요. 지난 포스팅의 미적분학 - 회전과 발산에서는 벡터함수의 회전과 발산의 정의와 관련된 다양한 정리들에 대해서 알아보았습니다. 오늘은 매개변수 곡면에 대해서 알아보도록 하죠. 1. 매개변수 곡면 (Parametric Surface) 지금까지 저희는 주로 매개변수 곡선 $C$ 상에서 선적분하는 방법에 대해서 중점적으로 다루었습니다. 여기서 한 가지 궁금증은 매개변수 "곡선"이 있다면 매개변수 "곡면"도 정의할 수 있겠죠? 방법은 간단합니다. 매개변수 곡선은 1개의 매개변수 $t$에 의해 결정되는 벡터함수 $\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j}$로 표현될 수 있었습니다. 곡면은 3차원으로 표현되기 때문에 3개의 성분함수 $$가 필요하겠네요. 보다 ..