수학/기초통계학

수학/기초통계학

기초통계학[11].중심극한정리와 큰 수의 법칙

안녕하세요. 오늘은 지난 시간의 기초통계학[10].연속확률변수의 기댓값, 분산, 표준편차 그리고 분위수(https://everyday-image-processing.tistory.com/16)에 이어서 중심극한정리(Central Limit Theorem;CLT)와 큰 수의 법칙(Law of Large Numbers;LoLN)에 대해서 알아보겠습니다. 드디어 확률 부분의 끝이 보이기 시작합니다. 확률의 경우 앞으로 3개만 더 포스팅하면 끝날 예정이고 그 이후에는 통계를 포스팅하겠습니다. 조금 더 힘을 내도록 합시다! 1. 큰 수의 법칙(Law of Large Number;LoLN) 큰 수의 법칙을 시작하기 전에 중요한 개념부터 정의하겠습니다. X1,X2,,Xn들이 동일한 ..

수학/기초통계학

기초통계학[10].연속확률변수의 기댓값, 분산, 표준편차 그리고 분위수

안녕하세요. 오늘은 지난 시간의 기초통계학[9].연속확률변수의 조작(https://everyday-image-processing.tistory.com/15)에 이어서 연속확률변수의 기댓값, 분산, 표준편차, 그리고 분위수에 대해서 알아보겠습니다. 지금까지 저희는 이산확률변수의 기댓값, 분산, 표준편차에 대해서만 공부했습니다. 공식을 기억하실지는 모르겠지만 연속확률변수와 이산확률변수의 차이점이 로 바뀌는 것밖에 없으니 이산확률변수를 이해했다면 빠르게 알 수 있습니다. 추가적으로 요약 통계량 중 하나인 분위수(quantiles)에 대해서 공부하고 마치도록 하겠습니다. 1. 연속확률변수의 기댓값 연속확률변수의 기댓값은 baxf(x)dx로 정의됩니다. 이산..

수학/기초통계학

기초통계학[9].연속확률변수의 조작

안녕하세요. 오늘은 지난 시간의 기초통계학[8].연속확률변수의 분포(https://everyday-image-processing.tistory.com/15)에 이어서 연속확률변수를 조작하는 법에 대해서 알아보겠습니다. 1. 연속확률변수의 조작 이산확률변수의 기댓값과 분산의 성질에서 Y=aX+b일 때 E(Y)=aE(X)+bVar(Y)=a2Var(X)임을 알았습니다. 그렇다면 연속확률변수에서 Y의 확률 밀도함수는 어떤 것일까요? 이산확률변수에서는 확률변수를 조작하는 경우 확률 분포 표를 그려 해결하였지만 연속확률변수에서는 표를 그릴수가 없습니다. 따라서 미적분학을 통해서 해결해야합니다. 지난 시간의 cdf의 특성을 기억해봅시다. 1. FX(x)=P(Xx) 2. $f_..

수학/기초통계학

기초통계학[8].연속확률변수의 분포

안녕하세요. 오늘은 지난 포스팅의 기초통계학[7].연속확률변수(https://everyday-image-processing.tistory.com/13)에 이어서 다양한 연속확률변수의 분포에 대해서 알아보도록 하겠습니다. 참고로 오늘 포스팅에서 나오는 분포는 이산확률변수의 분포와 마찬가지로 각 분포 식을 굳이 외우지 않아도 됩니다!! 여러분들에게는 구글이 있으니 필요할 때마다 찾을 수 있기 때문이죠. 또한 지난 시간의 cdf를 간단하게 '분포'로 표현하겠습니다. 1. 균등 분포(Uniform distribution) - 변수 : a, b - 범위 : [a,b] - 표기 : uniform(a,b), U(a,b) - 확률 밀도 함수 : axb에 대해서 $f(x)=\..

수학/기초통계학

기초통계학[7].연속확률변수

안녕하세요. 오늘은 지난 시간의 기초통계학[6].이산확률변수의 분산(https://everyday-image-processing.tistory.com/11)에 이어서 연속확률변수에 대해 알아보겠습니다. 1. 미적분학 이제 이산확률변수가 아닌 연속확률변수로 주제가 바뀌었습니다. 이산확률변수에서 확률을 계산하기 위해 을 사용했다면 연속확률변수에서는 확률을 계산하려면 을 사용합니다. 따라서 본격적으로 연속확률변수에 대해서 알아보기전에 간단한 미적분학 개념을 설명하겠습니다.(이후에 시간이 된다면 미적분학을 포스팅하겠습니다.) 참고로 고등학교 때 배우는 이과 미적분학으로도 충분합니다.(제가 고등학교다닐 때는 문이과가 나뉘어져있었는데 최근에는 문이과 통합이라고 들었습니다...) 기본적으로 어떤..

수학/기초통계학

기초통계학[6].이산확률변수의 분산

안녕하세요. 오늘은 지난 시간의 기초통계학[5].이산확률변수의 기댓값(https://everyday-image-processing.tistory.com/10)에 이어서 이산확률변수의 분산을 알아보도록 하겠습니다. 1. 퍼짐(spread) 지난 시간에 기댓값에 대해서 알아봤는데 확률 분포에 있어 기댓값이란 그 분포의 중심을 나타내는 측도라고 언급하였습니다. 따라서, 만약 확률 분포의 특성을 간단하게 한 개의 숫자로 표현하고자 할 때 기댓값은 좋은 선택입니다. 하지만 서로 다른 분포가 있습니다. 그 두 분포의 기댓값이 같다면 두 분포의 특성은 완전히 같다고 할 수 있을까요? X -2 -1 0 1 2 Y -3 3 pmf 110 210 410 $..

수학/기초통계학

기초통계학[5]. 이산확률변수의 기댓값

안녕하세요. 오늘은 지난 시간의 기초통계학[4].이산확률변수(https://everyday-image-processing.tistory.com/9)에 이어서 이산확률변수의 기댓값을 알아보겠습니다. 1. 기댓값(Expected Value) 기댓값과 동일한 말은 평균(mean)입니다. 평균에 대해서는 다들 아실꺼라고 생각하니 간단한 예제로 시작하겠습니다. Ex1. 5개의 면에는 3, 1개의 면에는 6으로 적혀있는 각 면이 나올 확률이 동일한 주사위가 있다고 했을 때, 주사위를 6000번 굴리면 평균적으로 어떤 숫자가 많이 나올것인가? 또는 기대되는가? 더보기 Answer 주사위의 5개의 면에는 3, 1개의 면에는 6이 적혀있고 각 면이 나올 확률이 동일하기 때문에 각각의 숫자가 나올 확률은 $\frac{5}..

수학/기초통계학

기초통계학[4].이산확률변수

안녕하세요. 오늘은 지난 시간의 기초통계학[3].조건부 확률, 독립, 베이지안 공식(https://everyday-image-processing.tistory.com/8)에 이어서 이산확률 변수에 대해서 학습하겠습니다. 1. 확률변수 본격적으로 시작하기 전에 과연 확률변수랑 무엇일까요? 이름만 들으면 확률 기반 변수와 같은 느낌이겠네요. 일단 저희가 기초통계학[2].확률 기초(https://everyday-image-processing.tistory.com/7)에서 배웠던 이산 표본 공간을 떠올리셨다면 아주 좋습니다. - 이산 표본 공간(discrete sample space): 순서대로 나열 할 수 있는 표본 공간으로 집합의 크기는 유한할 수도 있지만 무한하더라도 상관없습니다. Ex1. 6개의 면을 가..