NIPS2018

논문 함께 읽기/2D Image Classification (IC2D)

[IC2D] Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks (NIPS2018)

안녕하세요. 지난 포스팅의 [IC2D] MNASNet: Platform-Aware Neural Architecture Search for Mobile (CVPR2019)에서는 실제 모바일 디바이스에서 inference latency를 구함으로써 좀 더 정확한 NAS를 수행할 수 있는 MNAS에 대해서 소개하였습니다. 그나저나 다들 설날을 잘 보내셨나요? 저는 오늘도 연구실에 남아 논문을 읽고 있습니다. ㅎㅎ 이 김에 재밌는 논문하나 소개할까합니다. 오늘 리뷰할 논문은 NIPS 2018년에 게재 승인된 Gather-Excite Block입니다. Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks While the use of..

논문 함께 읽기/2D Image Classification (IC2D)

[IC2D] Pelee: A Real-Time Object Detection System on Mobile Devices (NIPS2018)

안녕하세요. 지난 포스팅의 [IC2D] Learnable Transferable Architecture for Scalable Image Recognition (CVPR2018)에서는 NAS의 발전된 모델인 NASNet에 대해서 소개시켜드렸습니다. 오늘은 CondenseNet과 마찬가지로 DenseNet의 변형 모델인 PeleeNet에 대해서 소개시켜드리도록 하겠습니다. Background 지금까지 저희는 MobileNet V1, ShuffleNet, MobileNet V2, NASNet에 대해서 알아보았습니다. 이러한 모델들의 특징은 "효율성 (efficiency)"을 강조한 방법들이죠. 특히, MobileNet과 ShuffleNet은 Depthwise Separable Convolution을 사용하여..

Johns Hohns
'NIPS2018' 태그의 글 목록