페르마이론

수학/미적분학

미적분학 - 최대값과 최소값

안녕하세요. 지난 포스팅의 미적분학 - 선형근사에서는 $x = a$의 근방에서 임의의 함수 $f(x)$의 값을 근사하는 선형근사(Linear Approximation)에 대해서 알아보았습니다. 오늘은 미분의 활용 예시로 최대값과 최소값을 구하는 과정에 대해서 알아보도록 하겠습니다. 미적분학 - 목차에서 다양한 주제의 미적분학 관련 포스팅들을 보실 수 있습니다. 1. 정의 : 전역 최대 (Global Maximum)와 전역 최소 (Global Minimum) 함수 $f$가 $x \in D$에 대해서 점 $x = c$에서 $f(c) \ge f(x)$를 만족하면 $f$는 전역 최대(Global Maximum) 또는 절대 최대(Absolute Maximum)이 존재하며 $f(c)$를 정의역 $D$에서의 $f$의..

Johns Hohns
'페르마이론' 태그의 글 목록