수학/선형대수학
선형대수학 - 직교여공간
안녕하세요. 지난 포스팅의 선형대수학 - 그람-슈미트 과정에서는 내적공간의 비직교 기저로부터 정규직교 기저를 만들 수 있는 그람-슈미트 과정 (Gram-Schmitz Process)에 대해서 알아보았습니다. 또한, 실제로 예시를 통해 적용해보았죠. 이를 통해, 0이 아닌 유한차원을 가지는 임의의 내적공간은 항상 정규직교 기저를 가짐을 보였습니다. 뿐만 아니라, 내적공간의 임의의 벡터들은 정규직교 기저를 통해 임의의 벡터와 기저 사이의 선형결합을 통해 표현할 수 있음을 보였습니다. 오늘은 직교집합을 주제로한 새로운 내용을 말씀드리고자 합니다. 바로 직교여공간 (Orthogonal Complement)입니다. 이 역시 앞으로 배울 고급 선형대수 주제에서 빼놓을 수 없는 주제이기 때문에 알아두시면 큰 도움이 ..