열화 함수

image processing

디지털 영상 처리 - 역 필터링

안녕하세요. 지난 포스팅의 디지털 영상 처리 - 열화 함수 추정에서는 저희에게 최소한의 정보가 주어졌을 때 열화함수를 추정하는 방법에 대해서 알아보았습니다. 어떻게든 열화함수를 알아냈다면 다음으로 저희가 할 일은 추정된 열화함수를 통해 다시 깨끗한 영상을 만들어주는 복원 과정을 해주면 됩니다. 오늘은 이러한 복원에서 가장 간단한 역 필터링(inverse filtering)에 대해서 알아보도록 하겠습니다. 저희가 열화함수에 대해서 선형성과 위치 불변성을 가정한 것이 기억나시나요? 이와 같은 가정하에서 오염된 영상 $g(x, y)$는 입력 영상 $f(x, y)$과 열화 함수 $H$의 임펄스 응답 사이의 컨볼루션 연산임을 증명하였습니다. 이를 수식으로 정리하면 아래와 같습니다. 여기서 부가 노이즈항 $\eta..

image processing

디지털 영상 처리 - 열화 함수 추정

안녕하세요. 지난 포스팅의 디지털 영상 처리 - 선형 및 위치 불변 열화 함수에서는 열화 함수에 선형성(가산성과 동차성을 동시에 만족)과 위치 불변성이라는 특별한 가정을 했을 때 오염된 영상 $g(x, y)$란 깨끗한 영상 $f(x, y)$와 열화 함수 $H$의 임펄스 응답 $h(x, y)$ 사이의 컨볼루션 연산을 통해 얻을 수 있음을 알게 되었습니다. 이를 정리하면 아래와 같죠. $$g(x, y) = h(x, y) * f(x, y) + \eta(x, y) \Leftrightarrow G(\mu, \nu) = H(\mu, \nu)F(\mu, \nu) + N(\mu, \nu)$$ 여기서 $G(\mu, \nu), F(\mu, \nu), H(\mu, \nu), N(\mu, \nu)$는 각각 $g(x, y), ..

image processing

디지털 영상 처리 - 선형 및 위치 불변 열화 함수

안녕하세요. 지난 포스팅의 디지털 영상 처리 - 노이즈만 있을 때 복원하기(공간 필터링) : 적응 필터 구현에서는 영상의 작은 부분에 대한 특성을 고려한 "적응적, 지역적 노이즈 감쇠 필터"와 "적응적 중간값 필터"를 구현해보았습니다. 지금까지는 노이즈 $\eta(x, y)$ 및 $N(\mu, \nu)$에 대해서만 고려했지만 오늘부터는 열화 함수 $h(x, y)$ 및 $H(\mu, \nu)$까지 적용된 오염된 영상을 복원해보도록 하겠습니다. 그 전에 저희는 추정할 열화 함수에 대한 가정과 가정된 열화 함수 $H(\mu, \nu)$에 대한 성질도 확인해보도록 하겠습니다. 저희는 영상 열화의 과정을 아래의 그림과 수식을 이용해서 표현하기로 약속하였습니다. $$g(x, y) = H\left[f(x, y)\ri..

Johns Hohns
'열화 함수' 태그의 글 목록