역행렬 구하기

수학/선형대수학

선형대수학 - 역행렬

안녕하세요. 지난 포스팅의 선형대수학 - 행렬의 계수에서는 행렬의 계수 (rank)가 무엇인지 정의하고 이를 구하는 방법까지 알아보았습니다. 핵심은 계수란 행렬 내에서 행벡터 또는 열벡터 중에서 선형독립인 벡터의 개수를 의미하고 쉽게 구하기 위해 기본행렬들을 곱해가며 $D$ 행렬꼴로 만드는 것이였습니다. 오늘은 이를 활용해서 역행렬을 구하는 방법에 대해서 알아보도록 하겠습니다. 사실상 지난 포스팅의 내용만 이해하신다면 쉽게 알 수 있습니다. 정의1. 첨가행렬 (Augmented Matrix) 행렬 $A$와 $B$를 각각 $m \times n$ 그리고 $m \times p$ 크기를 가지는 행렬이라고 하자. 첨가행렬 $(A | B)$는 $m \times (n + p)$ 크기의 행렬로 두 행렬 $A$와 $B$..

Johns Hohns
'역행렬 구하기' 태그의 글 목록