삼각함수 적분

수학/미적분학

미적분학 - 치환적분을 통한 삼각함수 적분

안녕하세요. 지난 포스팅의 미적분학 - 복잡한 삼각함수 적분 2에서는 $\int \tan^{m}(x) \sec^{n}(x) \; dx$ 꼴의 적분을 몇몇 케이스와 예제로 나누어 적분을 해보았습니다. 이전과 마찬가지로 핵심은 삼각함수와 관련된 항등식을 적절하게 활용하는 것이였습니다. 오늘은 치환적분을 통해서 삼각함수를 적분해야하는 경우에 대해서 설명드리도록 하겠습니다. 간단한 예제로 $\int \frac{\sqrt{9 - x^{2}}}{x^{2}} \; dx$를 구해보도록 하겠습니다. 언뜻보면 삼각함수와 관련없어 보이지만 $x = 3\sin(\theta)$라고 두면 $\sqrt{9 - x^{2}} = \sqrt{9 - 9\sin^{2}(\theta)} = 3\sqrt{1 - \sin^{2}(\theta)}..

수학/미적분학

미적분학 - 복잡한 삼각함수 적분

안녕하세요. 지난 포스팅의 미적분학 - 부분적분에서는 보다 복잡한 형태의 적분을 계산할 수 있는 부분적분(Intergration by Parts)에 대해서 알아보았습니다. 오늘은 지금까지 배웠던 치환적분과 부분적분을 활용하여 특별한 형태를 가진 함수들을 적분해보도록 하겠습니다. 오늘은 삼각함수입니다. 시작하기에 앞서 $\int \cos^{3}(x) \; dx$를 적분해보도록 하겠습니다. 바로 안떠오르실 겁니다. 저희가 지금까지 사용했던 기본적인 형태의 삼각함수가 아니기 때문이죠. 따라서 해당 식을 저희가 적분할 수 있도록 적절한 형태로 바꾸는 것이 핵심이 되겠습니다. 이를 위해서는 삼각함수와 관련된 중요한 항등식들을 활용해야합니다. 1. $\sin^{2}(x) + \cos^{2}(x) = 1$ 2. $\..

Johns Hohns
'삼각함수 적분' 태그의 글 목록