기본행렬

수학/선형대수학

선형대수학 - 기본행렬연산과 기본행렬

안녕하세요. 지난 포스팅의 선형대수학 - 쌍대공간에서는 벡터공간의 쌍대공간을 정의하고 이는 벡터공간 $V$에서 $\mathbf{F}$로의 선형범함수들 (적분, 미분, ...)의 벡터공간임을 알았습니다. 여기서 중요한 점은 쌍대공간의 기저인 쌍대기저는 Dirac-Delta 함수 $\delta$로 정의된다는 것입니다. 뿐만 아니라 이중쌍대공간인 $V^{**}$은 $V$와 같다는 것 역시 증명하였습니다. 지금까지 저희는 벡터공간의 정의와 함께 벡터공간을 이루는 기저와 차원에 대해서 알아보았으며 두 벡터공간 사이의 관계인 선형변환과 관련된 다양한 성질들에 대해서 알아보았습니다. 대부분의 학생들은 선형대수학이 행렬을 다루는 학문으로 알고 계실테지만 저희는 아직까지 행렬이라고는 선형변환의 행렬표현밖에 배우지 못했습..

Johns Hohns
'기본행렬' 태그의 글 목록