Paper Review

Paper Review

High-frequency Component Helps Explain the Generalization of Convolutional Neural Networks (CVPR2020)

안녕하세요. 오랜만에 논문 리뷰 포스팅을 하게 되었습니다. 이전에도 논문은 간간히 읽었는 데 포스팅 해야된다는 것을 까먹고 이제 올리게 되었습니다. 오늘 리뷰할 논문은 사실 이전에 제가 올렸던 segmentation, data augmentation과는 다른 주제를 가지고 있습니다. 이 논문은 Frequency domain이 CNN의 일반화 성능을 어떤 식으로 도와줄 수 있는 지에 대해서 설명하고 있는 논문입니다. 바로 시작해보도록 하죠. 이 논문의 중심 가정은 frequency domain의 high component와 image semantic 간의 어떤 관계가 있다는 것입니다. Figure 1은 설명하면 high frequency와 image semantic 간에는 분명히 분포를 통해서 관계성이 존..

Paper Review

Data augmentation using learned transformations for one-shot medical image segmentation (CVPR2019)

안녕하세요. 오늘은 CVPR 2019에 MIT에서 나온 Data augmentation using learned transformations for one-shot medical image segmentation입니다. 논문 출처는 https://arxiv.org/pdf/1902.09383.pdf 입니다. 코드는 https://github.com/xamyzhao/brainstorm 에 있으니 참고하시길 바랍니다.(조만간 코드 분석 포스팅도 올리겠습니다.) 혹시 method부터 보고 싶으신 분은 넘어가시면 됩니다.0. Abstract더보기 image segmentation은 medical에서 중요한 분야 중 하나입니다. 최근들어 CNN 기반 image segmentation은 SOTA(state-of-th..

Paper Review

Improving Data Augmentation for Medical Image Segmentation (MIDL2018)

본 논문은 MIDL 2018에 accept된 논문으로 Mix up 알고리즘 기반 Data Augmentation을 제안하고 있습니다.(https://openreview.net/forum?id=rkBBChjiG) 1. Introduction Data Augmentation의 목적은 훈련 데이터 셋의 양을 인위적으로 늘림으로써 모델의 일반화를 증가시키는 것입니다. 특히 segmentation의 경우 image와 해당 mask, 즉 label image에 동일한 변형을 해주어야합니다. 예를 들어 image에는 30도 회전을 적용하고 mask에는 50도 회전을 적용하면 변형된 mask는 변형된 image의 mask가 아니게 되는 것이죠. 이러한 Data Augmentation은 회전, 뒤집기와 같은 변형을 통해..