CVPR2017

논문 함께 읽기/2D Image Segmentation (IS2D)

[IS2D] RefineNet: Multi-Path Refinement Networks for High Resolution Semantic Segmentation (CVPR2017)

안녕하세요. 지난 포스팅의 [IS2D] Pyramid Scene Parsing Network (CVPR2017)에서는 Pyramid Pooling Module을 기반으로 Semantic Segmentation을 수행한 PSPNet에 대해서 소개하였습니다. 오늘은 Multi-Scale의 특성을 한껏 활용한 RefineNet에 대해서 소개하도록 하겠습니다.  Background기본적으로 Semantic Segmentation은 픽셀별 classification을 수행해야하기 때문에 dense prediction problem 또는 object parsing이라고도 부릅니다. 대표적으로 VGG와 ResNet은 영상 분류 (Image Classification) 문제에서는 높은 성능을 달성하였지만 dense p..

논문 함께 읽기/2D Image Segmentation (IS2D)

[IS2D] Pyramid Scene Parsing Network (CVPR2017)

안녕하세요. 지난 포스팅의 [IS2D] Rethinking Atrous Convolution for Semantic Segmentation (arxiv2017)에서는 Dilated Convolution을 활용한 DeepLabV3에 대해서 알아보았습니다. 오늘은 DeepLabV3와 유사하게 multi-branch 구조의 Pooling 모듈을 제안한 Pyramid Scene Pooling Network (PSPNet)에 대해서 알아보도록 하겠습니다.  Background기본적으로 Semantic Segmentation은 영상 내의 각 픽셀에서 classification을 수행하는 dense prediction task라고 볼 수 있습니다. 이 때 Scene Parsing이라고 부르는 것이 Semantic S..

논문 함께 읽기/2D Image Classification (IC2D)

[IC2D] Residual Attention Network for Image Classification (CVPR2017)

안녕하세요. 지난 포스팅의 [IC2D] Xception: Deep Learning with Depthwise Separable Convolutions (CVPR2017)에서는 Inception 모델의 최종 변형 구조인 Xception에 대해서 소개해드렸습니다. Xception은 실제로 많은 논문에서 ResNet과 같이 다양한 downstream task에서 backbone으로 사용되고 있으며 특히 Deepfake detection에서 많이 활용되고 있는 추세입니다. 오늘은 지금까지 성능을 향상시키기 위한 파라미터였던 깊이, 너비, cardinality, diversity가 아닌 attention의 개념을 컴퓨터 비전에 접목한 RAN에 대해서 소개시켜드리도록 하겠습니다. Background Attentio..

논문 함께 읽기/2D Image Classification (IC2D)

[IC2D] Xception: Deep Learning with Depthwise Separable Convolutions (CVPR2017)

안녕하세요. 지난 포스팅의 [IC2D] PolyNet: A Pursuit of Structural Diversity in Very Deep Networks (CVPR2017)에서는 CNN 모델의 diversity를 강조하여 Inception 모델의 새로운 변형 구조인 PolyNet을 제안하였습니다. 오늘은 Inception 모델의 최종버전이라고 할 수 있는 Xception에 대해서 소개해드리도록 하겠습니다. Xception: Deep Learning with Depthwise Separable Convolutions We present an interpretation of Inception modules in convolutional neural networks as being an intermediat..

논문 함께 읽기/2D Image Classification (IC2D)

[IC2D] PolyNet: A Pursuit of Structural Diversity in Very Deep Networks (CVPR2017)

안녕하세요. 지난 포스팅의 [IC2D] Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning (AAAI2017)에서는 Inception 모델과 ResNet의 결합을 통한 새로운 SOTA 성능의 모델인 Inception-ResNet 에 대해서 알아보았습니다. 오늘은 이러한 구조를 더욱 일반화한 PolyNet에 대해서 소개해드리겠습니다. Background 지금까지 저희가 보았던 영상 분류 모델들을 보면 대부분 ResNet 기반의 모델들이였습니다. 다른 변형구조로는 InceptionNet과 ResNet 구조를 결합한 Inception-ResNet과 cardinality를 강조한 multi-path 기반의 ResNex..

논문 함께 읽기/2D Image Classification (IC2D)

[IC2D] Deep Pyramid Residual Networks (CVPR2017)

안녕하세요. 지난 포스팅의 [IC2D] Densely Connected Convolutional Networks (CVPR2017)에서는 ResNet을 기반으로 블록 내의 계층 간 연결성을 강화한 DenseNet에 대해서 알아보았습니다. 이를 통해서, 더 낮은 파라미터로 충분히 좋은 성능을 낼 수 있다는 것을 검증하였습니다. 오늘도 ResNet 기반의 새로운 모델인 PyramidNet에 대해서 소개해드리도록 하겠습니다. Background ResNet에서는 Residual Block 간의 shortcut path를 도입하여 잔차 학습 (residual learning)이라는 개념을 도입하였습니다. 이를 통해, 기존의 VGGNet과 같이 단순한 모델에서 발생하던 diminish problem이나 gradi..

논문 함께 읽기/2D Image Classification (IC2D)

[IC2D] Densely Connected Convolutional Networks (CVPR2017)

안녕하세요. 지난 포스팅의 [IC2D] Aggregated Residual Transformations for Deep Neural Networks (CVPR2017)에서는 깊이(depth)나 너비 (width)보다 cardinality의 중요성을 강조하는 ResNext를 제안하였습니다. ResNet과 유사한 복잡도를 가지지만 성능 향상은 꽤 높은 편이였죠. 오늘은 계층간의 연결성 (connection)을 강조한 DenseNet에 대해서 소개해드리도록 하겠습니다. Densely Connected Convolutional Networks Recent work has shown that convolutional networks can be substantially deeper, more accurate, a..

논문 함께 읽기/2D Image Classification (IC2D)

[IC2D] Aggregated Residual Transformations for Deep Neural Networks (CVPR2017)

안녕하세요. 지난 포스팅의 [IC2D] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (arxiv2017)에서는 휴대장치에서도 빠르게 동작할 수 있는 효율적인 모델인 MobileNet에 대해서 소개해드렸습니다. 저희는 이때 처음으로 nn.Conv2d의 인자인 groups에 대해서 알게 되었습니다. MobileNet에서는 이를 depthwise로 사용하여 연산량을 낮추는 데 사용하였죠. 오늘은 ResNet과 InceptionNet을 기반으로 연구된 ResNext에 대해서 소개해드리도록 하겠습니다. Aggregated Residual Transformations for Deep Neural Networks ..

Johns Hohns
'CVPR2017' 태그의 글 목록