수학/미적분학
미적분학 - 벡터의 내적
안녕하세요. 지난 포스팅의 미적분학 - 벡터의 성분에서는 벡터를 좌표평면 상에 표현하는 방법과 그에 따른 성질에 대해서 알아보았습니다. 오늘은 벡터하면 빼놓을 수 없는 중요한 연산인 내적(inner product)에 대해서 알아보도록 하겠습니다. 정의1. 내적(inner product, dot product, scalar product) 두 벡터 $\mathbf{a} = $와 $\mathbf{b} = $가 주어졌다고 하자. 이때, 두 벡터 $\mathbf{a}, \mathbf{b}$ 사이의 내적은 아래와 같이 정의된다. $$\mathbf{a} \cdot \mathbf{b} = a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3}$$ 만약, 두 벡터가 2차원 상의 벡터라면 아래와 같다. $$\..